

T980(E)(A6)T APRIL EXAMINATION

NATIONAL CERTIFICATE

MATHEMATICS N6

(16030186)

6 April 2016 (X-Paper) 09:00–12:00

Calculators may be used.

This question paper consists of 5 pages and 1 formula sheet of 7 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N6 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Questions may be answered in any order, but subsections of questions must be kept together.
- 5. Show ALL the intermediate steps.
- 6. ALL the formulae used must be written down.
- 7. Questions must be answered in BLUE or BLACK ink.
- 8. Write neatly and legibly.

QUESTION 1

1.1 If
$$z = -5x^3y^2 - y^4 + 3x^2y$$
, determine $\frac{\partial^2 z}{\partial x \partial y}$ (2)

1.2 Given:
$$I = \frac{V}{R}$$

Calculate the change in I if V decreases with 5 volts and R with 8 ohms. The original value of V is 30 volts and of R is 10 ohms. [6]

QUESTION 2

Determine $\int y \, dx$ if:

$$2.1 y = \sin^4 5x \cos^3 5x (5)$$

$$2.2 y = \frac{1}{\sqrt{16x - x^2}} (3)$$

$$2.3 y = \sin^4 mx (4)$$

2.4
$$y = e^{\frac{x}{2}} \cdot \cos 3x$$
 (6)

QUESTION 3

Use partial fractions to calculate the following integrals:

3.1
$$\int \frac{-x^2 + 3x + 4}{x(1 - 2x)^2} dx$$
 (6)

3.2
$$\int \frac{10x^2 + 7x + 1}{(2x^2 + 1)(4x - 1)} dx$$
 (6) [12]

QUESTION 4

4.1 Calculate the particular solution of:

$$2\sin x \frac{dy}{dx} - y(\sin 2x) = \frac{2\sin x}{\sec x} \quad \text{at } (0;1)$$
(5)

4.2 Calculate the particular solution of:

$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 6y = 2x + 3, \text{ if } y = 1 \text{ when } x = 0 \text{ and } \frac{dy}{dx} = 2 \text{ when } x = 0.$$
 [12]

OUESTION 5

- 5.1.1 Calculate the points of intersection of the two curves $y = \frac{3}{x}$ and y+x-4=0. Make a neat sketch of the curves and show the area, in the first quadrant, bounded by the curves. Show the representative strip/element that you will use to calculate the volume (use the SHELL method only) generated if the area bounded by the curves rotates about the y-axis.
 - 5.1.2 Use the SHELL method to calculate the volume generated if the area, described in QUESTION 5.1.1, bounded by the two curves $y = \frac{3}{x}$ and y + x 4 = 0, rotates about the y-axis. (5)

(3)

- 5.2 Show the representative strip/element that you will use to calculate the volume generated if the area bounded by the graph, the ordinates y = 0 and $x = \frac{\pi}{3}$ rotates about the x-axis. (2)
 - 5.2.2 Calculate the volume generated if the area, described in QUESTION 5.1.1, rotates about the x-axis. (3)
 - 5.2.3 Calculate the volume moment about the y-axis as well as the distance of the centre of gravity from the y-axis. (6)
- 5.3 Calculate the points of intersection of the two curves $y = 2x^2$ and $x = \frac{y}{3}$. Make a neat sketch of the curves and show the area bounded by the curves. Show the representative strip/element, PERPENDICULAR to the x-axis, that you will use to calculate the area bounded by the curves. (3)

(16030186) -5- T980(E)(A6)T

5.3.2 Calculate the area described in QUESTION 5.3.1, bounded by the two curves $y = 2x^2$ and $x = \frac{y}{3}$. (3)

- 5.3.3 Calculate the second moment of area of the area described in QUESTION 5.3.1 about the *y*-axis. (4)
- 5.3.4 Express the answer in QUESTION 5.3.3 in terms of the area. (1)
- 5.4 Signarrow 5.4.1 A weir in the form of a trapezium is 2 m high, 10 m wide at the top and 4 m wide at the bottom. The top of the weir is in the water surface.

Sketch the weir and show the representative strip/element that you will use to calculate the depth of the centre of pressure on the retaining wall.

Calculate the relation between the two variables x and y. (3)

- 5.4.2 Calculate, by using integration, the area moment of the weir about the water level.
- Calculate, by using integration, the second moment of area of the weir about the water level, as well as the depth of the centre of pressure on the weir.

 (4)

QUESTION 6

- 6.1 Calculate the arc length of the curve described by the parametric equations, $x = 5(\cos t + t \sin t)$ and $y = 5(\sin t t \cos t)$, between the points t = 0 and $t = \pi$. (6)
- Calculate the surface area generated when the curve of $y = \sqrt{16x}$, over the interval $1 \le x \le 4$, is rotated about the x-axis. (6) [12]

TOTAL: 100

(3)

MATHEMATICS N6

FORMULA SHEET

Any other applicable formula may also be used.

Trigonometry

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\sin^2 A = \frac{1}{2} - \frac{1}{2} \cos 2A$$

$$\cos^2 A = \frac{1}{2} + \frac{1}{2} \cos 2A$$

$$sin(A \pm B) = sin A cos B \pm sin B cos A$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin A \cos B = \frac{1}{2} [\sin (A + B) + \sin (A - B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin (A + B) - \sin (A - B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos (A + B) + \cos (A - B)]$$

$$\sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)]$$

$$\tan x = \frac{\sin x}{\cos x}$$
; $\sin x = \frac{1}{\csc x}$; $\cos x = \frac{1}{\sec x}$

Copyright reserved

f(x)	$\frac{d}{dx} f(x)$	$\int f(x)dx$
x ⁿ	nx ^{n - 1}	$\frac{x^{n+1}}{n+1}+C \qquad (n\neq -1)$
ax ⁿ	$a \frac{d}{dx} x^n$	$a \int x^{n} dx$
e^{ax+b}	$e^{ax+b} \cdot \frac{d}{dx} (ax+b)$	$\frac{e^{ax+b}}{\frac{d}{dx}\left(ax+b\right)}+C$
a^{dx+e}	a^{dx+e} . $\ln a \cdot \frac{d}{dx} (dx+e)$	$\frac{a^{dx+e}}{\ln a \cdot \frac{d}{dx} (dx+e)} + C$
ln(ax)	$\frac{1}{ax} \cdot \frac{d}{dx} ax$	$x \ln ax - x + C$
$e^{f(x)}$	$e^{f(x)} \frac{d}{dx} f(x)$	
$a^{f(x)}$	$a^{f(x)} \cdot \ln a \cdot \frac{d}{dx} f(x)$	
$\ln f(x)$	$\frac{1}{f(x)} \cdot \frac{d}{dx} f(x)$	
sin ax	$a\cos ax$	$-\frac{\cos ax}{a} + C$
cos ax	$-a \sin ax$	$\frac{\sin ax}{a} + C$
tan ax	$a \sec^2 ax$	$\frac{1}{a}\ln\left[\sec\left(ax\right)\right] + C$
cot ax	$-a \csc^2 ax$	$\frac{1}{a}\ln\left[\sin\left(ax\right)\right] + C$
sec ax	$a \sec ax \tan ax$	$\frac{1}{a}\ln\left[\sec ax + \tan ax\right] + C$
cosec ax	-a cosec ax cot ax	$\frac{1}{a}\ln\left[\tan\left(\frac{ax}{2}\right)\right] + C$

(x)	$\frac{d}{dx} f(x)$	$\int f(x) dx$
in f(x)	$\cos f(x) \cdot f'(x)$	-
$\cos f(x)$	$-\sin f(x) \cdot f'(x)$	-
an f(x)	$\sec^2 f(x) \cdot f'(x)$	-
$\operatorname{ot} f(x)$	$-\csc^2 f(x) \cdot f'(x)$	-
ec f(x)	$\sec f(x) \tan f(x) \cdot f'(x)$	-
$\operatorname{osec} f(x)$	$-\csc f(x) \cot f(x) \cdot f'(x)$	-
$\sin^{-1}f(x)$	$\frac{f'(x)}{\sqrt{I - [f(x)]^2}}$	
$os^{-1}f(x)$	$\frac{-f'(x)}{\sqrt{l-[f(x)]^2}}$	·
$\operatorname{nn}^{-1} f(x)$	$\frac{f'(x)}{[f(x)]^2 + 1}$	
$\operatorname{ot}^{-1} f(x)$	$\frac{-f'(x)}{[f(x)]^2+1}$	
$ec^{-1}f(x)$	$\frac{f'(x)}{f(x)\sqrt{[f(x)]^2-1}}$	9
$\operatorname{osec}^{-1} f(x)$	$\frac{-f'(x)}{f(x)\sqrt{[f(x)]^2-1}}$	
$\sin^2(ax)$	-	$\frac{x}{2} - \frac{\sin(2ax)}{4a} + C$
$os^2(ax)$	-	$\frac{x}{2} + \frac{\sin(2ax)}{4a} + C$
$an^2(ax)$	-	$\frac{1}{a}\tan(ax) - x + \epsilon$

Copyright reserved Please turn over (16030186) -4- T980(E)(A6)T

$$f(x) \qquad \qquad \frac{d}{dx} f(x) \qquad \qquad \int f(x) \, dx$$

$$\cot^2(ax) \qquad \qquad -\frac{1}{a}\cot(ax) - x + C$$

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + C \qquad (n \neq -1)$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$$

$$\int \frac{dx}{\sqrt{a^2 - b^2 x^2}} = \frac{I}{b} \sin^{-1} \frac{bx}{a} + C$$

$$\int \frac{dx}{a^2 + b^2 x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a} + C$$

$$\int \sqrt{a^2 - b^2 x^2} \ dx = \frac{a^2}{2b} \sin^{-1} \frac{bx}{a} + \frac{x}{2} \sqrt{a^2 - b^2 x^2} + C$$

$$\int \frac{dx}{a^2 - b^2 x^2} = \frac{1}{2ab} \ln \left(\frac{a + bx}{a - bx} \right) + C$$

$$\int \sqrt{x^2 \pm b^2} \ dx = \frac{x}{2} \sqrt{x^2 \pm b^2} \pm \frac{b^2}{2} \ln \left[x + \sqrt{x^2 \pm b^2} \right] + C$$

$$\int \frac{dx}{\sqrt{b^2 x^2 \pm a^2}} = \frac{1}{b} \ln \left[bx + \sqrt{b^2 x^2 \pm a^2} \right] + C$$

Applications of integration

AREAS

$$A_x = \int_a^b y dx \; ; \; A_x = \int_a^b (y_1 - y_2) dx$$

$$A_y = \int_a^b x dy \; ; A_y = \int_a^b (x_1 - x_2) \, dy$$

VOLUMES

$$V_x = \pi \int_a^b y^2 dx \; ; V_x = \pi \int_a^b \left(y_1^2 - y_2^2 \right) dx \; ; V_x = 2\pi \int_a^b xy dy$$

$$V_y = \pi \int_a^b x^2 dy$$
; $V_y = \pi \int_a^b (x_1^2 - x_2^2) dy$; $V_y = 2\pi \int_a^b xy dx$

AREA MOMENTS

$$A_{m-x} = rdA$$

$$A_{m-v} = rdA$$

CENTROID

$$\bar{x} = \frac{A_{m-y}}{A} = \frac{\int_a^b r dA}{A}; \bar{y} = \frac{A_{m-x}}{A} = \frac{\int_a^b r dA}{A}$$

SECOND MOMENT OF AREA

$$I_x = \int_a^b r^2 dA$$

$$I_x = \int_a^b r^2 dA \qquad ; \qquad I_y = \int_a^b r^2 dA$$

VOLUME MOMENTS

$$V_{m-x} = \int_a^b r dV$$
 ; $V_{m-y} = \int_a^b r dV$

$$V_{m-y} = \int_{a}^{b} r dV$$

CENTRE OF GRAVITY

$$\bar{x} = \frac{v_{m-y}}{V} = \frac{\int_a^b r dV}{V}$$
; $\bar{y} = \frac{v_{m-x}}{V} = \frac{\int_a^b r dV}{V}$

MOMENTS OF INERTIA

 $Mass = Density \times volume$

$$M = \rho V$$

DEFINITION:
$$I = m r^2$$

GENERAL

$$I = \int_{a}^{b} r^2 dm = \rho \int_{a}^{b} r^2 dV$$

CIRCULAR LAMINA

$$I_z = \frac{1}{2}mr^2$$

$$I = \frac{1}{2} \int_{a}^{b} r^{2} dm = \frac{1}{2} \rho \int_{a}^{b} r^{2} dV$$

$$I_x = \frac{1}{2} \rho \pi \int_a^b y^4 dx$$
 $I_y = \frac{1}{2} \rho \pi \int_a^b x^4 dy$

CENTRE OF FLUID PRESSURE

$$\bar{\bar{y}} = \frac{\int_{a}^{b} r^{2} dA}{\int_{a}^{b} r dA}$$

$$\frac{f(x)}{(ax+b)^n} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3} + \dots + \frac{Z}{(ax+b)^n}$$

$$\frac{f(x)}{(ax+b)^3(cx+d)^3} = \frac{A}{ax+b} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3} + \frac{D}{(cx+d)} + \frac{E}{(cx+d)^2} + \frac{F}{(cx+d)^3}$$

$$\frac{f(x)}{(ax^2 + bx + c)(dx + e)^n} = \frac{Ax + F}{ax^2 + bx + c} + \frac{B}{dx + e} + \frac{C}{(dx + e)^2} + \dots + \frac{Z}{(dx + e)^n}$$

$$A_x = \int_a^b 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ dx$$

$$A_x = \int_d^c 2\pi y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \ dy$$

$$A_y = \int_a^b 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$A_y = \int_d^c 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \ dy$$

$$A_{x} = \int_{u1}^{u2} 2\pi y \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2}} du$$

$$A_{y} = \int_{u1}^{u2} 2\pi x \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2}} du$$

$$S = \int_{a}^{b} \sqrt{I + \left(\frac{dy}{dx}\right)^2} \ dx$$

$$S = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \ dy$$

$$S = \int_{uI}^{u2} \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} \ du$$

$$\frac{dy}{dx} + Py = Q \quad \because ye^{\int Pdx} = \int Qe^{\int Pdx} dx$$

$$y = Ae^{r_1x} + Be^{r_2x} r_1 \neq r_2$$

$$y = e^{rx}(A + Bx) \quad r_1 = r_2$$

$$y = e^{ax} [A\cos bx + B\sin bx]$$
 $r = a \pm ib$

$$\frac{d^2y}{dx^2} = \frac{d}{d\theta} \left(\frac{dy}{dx}\right) \frac{d\theta}{dx}$$